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FUNCTIONAL INEQUALITIES IN PARANORMED
SPACES

SunG JIN LEE*, CHOONKIL PARK** AND JUNG RYE LEE***

ABSTRACT. In this paper, we investigate additive functional in-
equalities in paranormed spaces. Furthermore, we prove the Hyers-
Ulam stability of additive functional inequalities in paranormed
spaces.

1. Introduction and preliminaries

The concept of statistical convergence for sequences of real numbers
was introduced by Fast [3] and Steinhaus [26] independently and since
then several generalizations and applications of this notion have been
investigated by various authors (see [5, 14, 16, 17, 25]). This notion was
defined in normed spaces by Kolk [15].

We recall some basic facts concerning Fréchet spaces.

DEFINITION 1.1. [28] Let X be a vector space. A paranorm P : X —
[0,00) is a function on X such that

(1) P(0) =
) Plos) - P(@):
(3) P(x +y) < P(xz)+ P(y) (triangle inequality)
(4) If {t,,} is a sequence of scalars with ¢, — ¢ and {z,} C X with
P(x, —x) — 0, then P(t,z, —tx) — 0 (continuity of multiplication).

The pair (X, P) is called a paranormed space if P is a paranorm on
X.

The paranorm is called total if, in addition, we have

(5) P(z) = 0 implies = = 0.
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A Fréchet space is a total and complete paranormed space.

The stability problem of functional equations originated from a ques-
tion of Ulam [27] concerning the stability of group homomorphisms.
Hyers [10] gave a first affirmative partial answer to the question of Ulam
for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for ad-
ditive mappings and by Rassias [21] for linear mappings by considering
an unbounded Cauchy difference. A generalization of the Rassias the-
orem was obtained by Gavruta [7] by replacing the unbounded Cauchy
difference by a general control function in the spirit of Rassias’ approach.

In 1990, Rassias [22] during the 27%" International Symposium on
Functional Equations asked the question whether such a theorem can
also be proved for p > 1. In 1991, Gajda [6] following the same approach
as in Rassias [21], gave an affirmative solution to this question for p > 1.
It was shown by Gajda [6], as well as by Rassias and Semrl [23] that
one cannot prove a Rassias’ type theorem when p =1 (cf. the books of
Czerwik [2], Hyers, Isac and Rassias [11]).

In 1982, J.M. Rassias [20] followed the innovative approach of the
Th.M. Rassias’ theorem [21] in which he replaced the factor ||z||? + ||y||?
by ||z||? - ||ly||¢ for p,q € R with p+q # 1. Gavruta [7] provided a further
generalization of Th.M. Rassias’ Theorem. During the last two decades
a number of papers and research monographs have been published on
various generalizations and applications of the Hyers-Ulam stability to
a number of functional equations and mappings (see [12, 13, 18]).

Throughout this paper, assume that (X, P) is a Fréchet space and
that (Y, - ||) is a Banach space.

In [8], Gildnyi showed that if f satisfies the functional inequality

(L.1) 12f () +2f(y) — fley )] < [ f(zy)]

then f satisfies the Jordan-von Neumann functional equation

2f(x) +2f(y) = flay) + flay™).

See also [24]. Fechner [4] and Gilanyi [9] proved the Hyers-Ulam stability
of the functional inequality (1.1).
Park, Cho and Han [19] proved the Hyers-Ulam stability of the fol-

lowing functional inequalities
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In Section 2, we prove the Hyers-Ulam stability of the functional in-
equality (1.2) in paranormed spaces. In Section 3, we prove the Hyers-
Ulam stability of the functional inequality (1.3) in paranormed spaces.
In Section 4, we prove the Hyers-Ulam stability of the functional in-
equality (1.4) in paranormed spaces.

2. Stability of a functional inequality associated with a 3-
variable Jensen additive functional equation

We prove the Hyers-Ulam stability of a functional inequality associ-
ated with a Jordan-von Neumann type 3-variable Jensen additive func-
tional equation.

Note that P(2z) < 2P(x) forall z € Y.

ProPOSITION 2.1. ([19, Proposition 2.1]) Let f : X — Y be a map-
ping such that

1) + F@) + £ < H2f (

for all x,y,z € X. Then f is Cauchy additive.

TH+y+=z
2

THEOREM 2.2. Let r be a positive real number with r < 1, and let
f: X — Y be a mapping such that

(2.1) 1 () + F(y) + F(2)l

< H2f (“g”) H + P(z)" + P(y) + P(2)"

for all x,y,z € X. Then there exists a unique Cauchy additive mapping
h: X — Y such that

(2.2) |If(z) = h(2)]| <
for all z € X.

4 2r+2 227‘ 9 or
TR e 2
4 —4r 2-—2r

Plz)"

Proof. Letting v =y =2z =0 1n (2.1), we get ||3f(0)|| < ||2£(0)]|. So
7(0) = 0.
Letting y = x and z = —2z in (2.1), we get

12f(z) + f(=22)[ < (2+2")P(x)"
and so

12f(=22) + f(4z)| < (24 27)2"P(x)"
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for all x € X. Thus
[4f(z) — f(4z)|| < (4+ 2772+ 2°")P(x)"

and so

4 2r+2 22r
< ;p(x)r

@) - pream)| < 25

for all x € X. Hence

1

1 o 1 .
Ef(4lx) - 4T,Lf(4m93) < Z Ef(‘l]x) - Wf(‘lﬁlff)
j=l
4+ 2r+2 + 227“ m—1 4rj .
(2.3) S 2 lﬁp(‘r)
J:

for all nonnegative integers m and [ with m > [ and all x € X. It follows
from (2.3) that the sequence {4 f(4"z)} is a Cauchy sequence for all
z € X. Since Y is complete, the sequence {;- f(4"z)} converges. So
one can define the mapping h : X — Y by

h(z) = lim 4i Fana)

n—oo 4m

for all z € X. Moreover, letting [ = 0 and passing the limit m — oo in
(2.3), we get (2.2).
It follows from (2.1) that

1A (z) + h(y) + h(2)] = lim 4% 1 (4"z) + f (4"y) + f (472)]]
< lim 1”H2f (4“”3+2W’)H+ lim =

n—oo 41
o, (:c+g+z>H

for all z,y,z € X. So

(P(z)" + P(y)" + P(2)")

1h(2) + h(y) + h(z)]| < HQ” (W) H

for all z,y,z € X. By Proposition 2.1, the mapping h : X — Y is
Cauchy additive.
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Now, let T': X — Y be another Cauchy additive mapping satisfying
(2.2). Then we have

Ih(z) =T (=) = 4% |h (4%2) =T (4" )|

< R — f @) + |7 (4"5) - ] (4")])

- 2(4 4 2r+2 4 22r>4nr

- (4 —4m)4n
which tends to zero as n — oo for all z € X. So we can conclude that
h(z) = T'(x) for all z € X. This proves the uniqueness of h. Thus the

mapping h : X — Y is a unique Cauchy additive mapping satisfying
(2.2). O

P(l‘)T’

THEOREM 2.3. Let r be a positive real number with r < %, and let
f: X — Y be a mapping such that

(2.4) 1f () + F(y) + F(2)]l

< |or (Z552) |+ ptar Pt Py

for all x,y,z € X. Then there exists a unique Cauchy additive mapping
h: X — Y such that

(2.5) 1f(z) = h(z)]| <
for all x € X.

S
Proof. Letting v =y =z =0 in (2.4), we get ||3f(0)|| < |12£(0)]|. So
7(0) =0,
Letting y = x and z = —2z in (2.4), we get
I12f () + f(=2)|| < 2" P(2)*
and so
|12f(=22) + f(4)|| < 2V P(x)*
for all z € X. Thus
14f () — f(4a)|| < (271 + 27) P(2)™
and so

2r+2 24r
<2 2 payr

@) - pran)| < 2
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for all x € X. Hence

m—1
1 1 m 1 , 1 4
| g7t - o) < X | prein) - st
j=l
or+1 + 94r m—1 4373 -
(2.6) < 1 > 5 P@)

j=l
for all nonnegative integers m and [ with m > [ and all z € X. It follows
from (2.6) that the sequence {2 f(4"z)} is a Cauchy sequence for all
z € X. Since Y is complete, the sequence {5 f(4"z)} converges. So
one can define the mapping h: X — Y by

h(z) := nlgrolo 4%]‘(4”95)

for all x € X. Moreover, letting | = 0 and passing the limit m — oo in
(2.6), we get (2.5).
The rest of the proof is similar to the proof of Theorem 2.2. O

3. Stability of a functional inequality associated with a 3-
variable Cauchy additive functional equation

We prove the Hyers-Ulam stability of a functional inequality associ-
ated with a Jordan-von Neumann type 3-variable Cauchy additive func-
tional equation.

ProposITION 3.1. ([19, Proposition 2.2]) Let f : X — Y be a map-
ping such that
1f (@) + F) + FEI < 1f (@ +y +2)]]
for all x,y,z € X. Then f is Cauchy additive.

THEOREM 3.2. Let r be a positive real number with r < 1, and let
f: X — Y be a mapping such that

(3.1) 1 (x) + f(y) + F(2)]l
<|f@+y+2)l+Pl) + Ply) + P()

for all x,y,z € X. Then there exists a unique Cauchy additive mapping
h: X — Y such that

for all x € X.
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Proof. Letting x =y = z = 0 in (3.1), we get [|3£(0)|| < ||f(0)]]. So
7(0) = 0.

Letting y = x and z = —2z in (3.1), we get

12f(z) + f(=22)[ < (2+27) P(x)"
and so
12f(=22) + f(4z)| < (2+2")2"P(x)"
for all z € X. Thus
14f () — f(42)|| < (4+27F2 + 2%) P(2)"

and so

4 2r+2 22r
< e P(x)"

@)~ a0 §

for all x € X.
The rest of the proof is the same as in the proof of Theorem 2.2. [

THEOREM 3.3. Let r be a positive real number with r < %, and let
f: X —Y be a mapping such that

1f (@) + ) + I < NF (e +y+2)[[ + P2)" - P(y)" - P(2)"

for all x,y,z € X. Then there exists a unique Cauchy additive mapping
h: X — Y such that

r+1 4r
7@~ h@) < 2t Py

forallz € X.
Proof. The proof is similar to the proofs of Theorems 2.2 and 2.3. [

4. Stability of a functional inequality associated with the
Cauchy-Jensen functional equation

We prove the Hyers-Ulam stability of a functional inequality associ-
ated with a Jordan-von Neumann type Cauchy-Jensen functional equa-
tion.

PROPOSITION 4.1. ([19, Proposition 2.3]) Let f : X — Y be a map-

ping such that
1£(2) + F) + 2/(2)] < ' of (“’ng N ) H

for all x,y,z € X. Then f is Cauchy additive.
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THEOREM 4.2. Let r be a positive real number with r < 1, and let
f: X — Y be a mapping such that

(4.1) 1 f(z) + f(y) +2f (=)l
< H2f (‘“2”’ + z) ‘ + P(a)" + P(y)" + P(2)"

for all x,y,z € X. Then there exists a unique Cauchy additive mapping
h: X — Y such that

| f(z) = h(z)| <
for allx € X.

Proof. Letting x =y =2z =0 1n (4.1), we get ||[4f(0)|| < ||2£(0)]|. So
£(0) =0.
Replacing = by —2x and letting y = 0 and z = x in (4.1), we get

1f(=22) + 2f(2)]| < (1 +2") P(x)"

24 3.2" 492 1427
=t 2 " Pl =
T @) =55

P(z)"

and so
12f(=22) + f(4z)| < (1 +2")2"P(x)"
for all z € X. Thus
[4f () — f(42)] < (2+3-2" + 22" P(x)"
and so
24327 427

Py

|0) - )| <

for all x € X.
The rest of the proof is the same as in the proof of Theorem 2.2. [J
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