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FUNCTIONAL INEQUALITIES IN PARANORMED
SPACES

Sung Jin Lee*, Choonkil Park**, and Jung Rye Lee***

Abstract. In this paper, we investigate additive functional in-
equalities in paranormed spaces. Furthermore, we prove the Hyers-
Ulam stability of additive functional inequalities in paranormed
spaces.

1. Introduction and preliminaries

The concept of statistical convergence for sequences of real numbers
was introduced by Fast [3] and Steinhaus [26] independently and since
then several generalizations and applications of this notion have been
investigated by various authors (see [5, 14, 16, 17, 25]). This notion was
defined in normed spaces by Kolk [15].

We recall some basic facts concerning Fréchet spaces.

Definition 1.1. [28] Let X be a vector space. A paranorm P : X →
[0,∞) is a function on X such that

(1) P (0) = 0;
(2) P (−x) = P (x) ;
(3) P (x + y) ≤ P (x) + P (y) (triangle inequality)
(4) If {tn} is a sequence of scalars with tn → t and {xn} ⊂ X with

P (xn − x) → 0, then P (tnxn − tx) → 0 (continuity of multiplication).

The pair (X,P ) is called a paranormed space if P is a paranorm on
X.

The paranorm is called total if, in addition, we have
(5) P (x) = 0 implies x = 0.
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A Fréchet space is a total and complete paranormed space.
The stability problem of functional equations originated from a ques-

tion of Ulam [27] concerning the stability of group homomorphisms.
Hyers [10] gave a first affirmative partial answer to the question of Ulam
for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for ad-
ditive mappings and by Rassias [21] for linear mappings by considering
an unbounded Cauchy difference. A generalization of the Rassias the-
orem was obtained by Găvruta [7] by replacing the unbounded Cauchy
difference by a general control function in the spirit of Rassias’ approach.

In 1990, Rassias [22] during the 27th International Symposium on
Functional Equations asked the question whether such a theorem can
also be proved for p ≥ 1. In 1991, Gajda [6] following the same approach
as in Rassias [21], gave an affirmative solution to this question for p > 1.
It was shown by Gajda [6], as well as by Rassias and Šemrl [23] that
one cannot prove a Rassias’ type theorem when p = 1 (cf. the books of
Czerwik [2], Hyers, Isac and Rassias [11]).

In 1982, J.M. Rassias [20] followed the innovative approach of the
Th.M. Rassias’ theorem [21] in which he replaced the factor ‖x‖p +‖y‖p

by ‖x‖p · ‖y‖q for p, q ∈ R with p+q 6= 1. Găvruta [7] provided a further
generalization of Th.M. Rassias’ Theorem. During the last two decades
a number of papers and research monographs have been published on
various generalizations and applications of the Hyers-Ulam stability to
a number of functional equations and mappings (see [12, 13, 18]).

Throughout this paper, assume that (X,P ) is a Fréchet space and
that (Y, ‖ · ‖) is a Banach space.

In [8], Gilányi showed that if f satisfies the functional inequality

‖2f(x) + 2f(y)− f(xy−1)‖ ≤ ‖f(xy)‖(1.1)

then f satisfies the Jordan-von Neumann functional equation

2f(x) + 2f(y) = f(xy) + f(xy−1).

See also [24]. Fechner [4] and Gilányi [9] proved the Hyers-Ulam stability
of the functional inequality (1.1).

Park, Cho and Han [19] proved the Hyers-Ulam stability of the fol-
lowing functional inequalities

‖f(x) + f(y) + f(z)‖ ≤
∥∥∥∥2f

(
x + y + z

2

)∥∥∥∥ ,(1.2)

‖f(x) + f(y) + f(z)‖ ≤ ‖f(x + y + z)‖,(1.3)

‖f(x) + f(y) + 2f(z)‖ ≤
∥∥∥∥2f

(
x + y

2
+ z

)∥∥∥∥ .(1.4)
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In Section 2, we prove the Hyers-Ulam stability of the functional in-
equality (1.2) in paranormed spaces. In Section 3, we prove the Hyers-
Ulam stability of the functional inequality (1.3) in paranormed spaces.
In Section 4, we prove the Hyers-Ulam stability of the functional in-
equality (1.4) in paranormed spaces.

2. Stability of a functional inequality associated with a 3-
variable Jensen additive functional equation

We prove the Hyers-Ulam stability of a functional inequality associ-
ated with a Jordan-von Neumann type 3-variable Jensen additive func-
tional equation.

Note that P (2x) ≤ 2P (x) for all x ∈ Y .

Proposition 2.1. ([19, Proposition 2.1]) Let f : X → Y be a map-
ping such that

‖f(x) + f(y) + f(z)‖ ≤
∥∥∥∥2f

(
x + y + z

2

)∥∥∥∥
for all x, y, z ∈ X. Then f is Cauchy additive.

Theorem 2.2. Let r be a positive real number with r < 1, and let
f : X → Y be a mapping such that

‖f(x) + f(y) + f(z)‖(2.1)

≤
∥∥∥∥2f

(
x + y + z

2

)∥∥∥∥ + P (x)r + P (y)r + P (z)r

for all x, y, z ∈ X. Then there exists a unique Cauchy additive mapping
h : X → Y such that

‖f(x)− h(x)‖ ≤ 4 + 2r+2 + 22r

4− 4r
P (x)r =

2 + 2r

2− 2r
P (x)r(2.2)

for all x ∈ X.

Proof. Letting x = y = z = 0 in (2.1), we get ‖3f(0)‖ ≤ ‖2f(0)‖. So
f(0) = 0.

Letting y = x and z = −2x in (2.1), we get

‖2f(x) + f(−2x)‖ ≤ (2 + 2r)P (x)r

and so

‖2f(−2x) + f(4x)‖ ≤ (2 + 2r)2rP (x)r
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for all x ∈ X. Thus

‖4f(x)− f(4x)‖ ≤ (4 + 2r+2 + 22r)P (x)r

and so
∥∥∥∥f(x)− 1

4
f(4x)

∥∥∥∥ ≤
4 + 2r+2 + 22r

4
P (x)r

for all x ∈ X. Hence
∥∥∥∥

1
4l

f(4lx)− 1
4m

f(4mx)
∥∥∥∥ ≤

m−1∑

j=l

∥∥∥∥
1
4j

f(4jx)− 1
4j+1

f(4j+1x)
∥∥∥∥

≤ 4 + 2r+2 + 22r

4

m−1∑

j=l

4rj

4j
P (x)r(2.3)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows
from (2.3) that the sequence { 1

4n f(4nx)} is a Cauchy sequence for all
x ∈ X. Since Y is complete, the sequence { 1

4n f(4nx)} converges. So
one can define the mapping h : X → Y by

h(x) := lim
n→∞

1
4n

f(4nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in
(2.3), we get (2.2).

It follows from (2.1) that

‖h(x) + h(y) + h(z)‖ = lim
n→∞

1
4n
‖f (4nx) + f (4ny) + f (4nz)‖

≤ lim
n→∞

1
4n

∥∥∥∥2f

(
4n x + y + z

2

)∥∥∥∥ + lim
n→∞

4nr

4n
(P (x)r + P (y)r + P (z)r)

=
∥∥∥∥2h

(
x + y + z

2

)∥∥∥∥

for all x, y, z ∈ X. So

‖h(x) + h(y) + h(z)‖ ≤
∥∥∥∥2h

(
x + y + z

2

)∥∥∥∥

for all x, y, z ∈ X. By Proposition 2.1, the mapping h : X → Y is
Cauchy additive.
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Now, let T : X → Y be another Cauchy additive mapping satisfying
(2.2). Then we have

‖h(x)− T (x)‖ =
1
4n
‖h (4nx)− T (4nx)‖

≤ 1
4n

(‖h (4nx)− f (4nx)‖+ ‖T (4nx)− f (4nx)‖)

≤ 2(4 + 2r+2 + 22r)4nr

(4− 4r)4n
P (x)r,

which tends to zero as n → ∞ for all x ∈ X. So we can conclude that
h(x) = T (x) for all x ∈ X. This proves the uniqueness of h. Thus the
mapping h : X → Y is a unique Cauchy additive mapping satisfying
(2.2).

Theorem 2.3. Let r be a positive real number with r < 1
3 , and let

f : X → Y be a mapping such that

‖f(x) + f(y) + f(z)‖(2.4)

≤
∥∥∥∥2f

(
x + y + z

2

)∥∥∥∥ + P (x)r · P (y)r · P (z)r

for all x, y, z ∈ X. Then there exists a unique Cauchy additive mapping
h : X → Y such that

‖f(x)− h(x)‖ ≤ 2r+1 + 24r

4− 43r
P (x)3r(2.5)

for all x ∈ X.

Proof. Letting x = y = z = 0 in (2.4), we get ‖3f(0)‖ ≤ ‖2f(0)‖. So
f(0) = 0.

Letting y = x and z = −2x in (2.4), we get

‖2f(x) + f(−2x)‖ ≤ 2rP (x)3r

and so

‖2f(−2x) + f(4x)‖ ≤ 24rP (x)3r

for all x ∈ X. Thus

‖4f(x)− f(4x)‖ ≤ (2r+1 + 24r)P (x)3r

and so ∥∥∥∥f(x)− 1
4
f(4x)

∥∥∥∥ ≤
2r+2 + 24r

4
P (x)3r
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for all x ∈ X. Hence
∥∥∥∥

1
4l

f(4lx)− 1
4m

f(4mx)
∥∥∥∥ ≤

m−1∑

j=l

∥∥∥∥
1
4j

f(4jx)− 1
4j+1

f(4j+1x)
∥∥∥∥

≤ 2r+1 + 24r

4

m−1∑

j=l

43rj

4j
P (x)3r(2.6)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows
from (2.6) that the sequence { 1

4n f(4nx)} is a Cauchy sequence for all
x ∈ X. Since Y is complete, the sequence { 1

4n f(4nx)} converges. So
one can define the mapping h : X → Y by

h(x) := lim
n→∞

1
4n

f(4nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in
(2.6), we get (2.5).

The rest of the proof is similar to the proof of Theorem 2.2.

3. Stability of a functional inequality associated with a 3-
variable Cauchy additive functional equation

We prove the Hyers-Ulam stability of a functional inequality associ-
ated with a Jordan-von Neumann type 3-variable Cauchy additive func-
tional equation.

Proposition 3.1. ([19, Proposition 2.2]) Let f : X → Y be a map-
ping such that

‖f(x) + f(y) + f(z)‖ ≤ ‖f(x + y + z)‖
for all x, y, z ∈ X. Then f is Cauchy additive.

Theorem 3.2. Let r be a positive real number with r < 1, and let
f : X → Y be a mapping such that

‖f(x) + f(y) + f(z)‖(3.1)
≤ ‖f (x + y + z)‖+ P (x)r + P (y)r + P (z)r

for all x, y, z ∈ X. Then there exists a unique Cauchy additive mapping
h : X → Y such that

‖f(x)− h(x)‖ ≤ 2 + 2r

2− 2r
P (x)r

for all x ∈ X.
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Proof. Letting x = y = z = 0 in (3.1), we get ‖3f(0)‖ ≤ ‖f(0)‖. So
f(0) = 0.

Letting y = x and z = −2x in (3.1), we get

‖2f(x) + f(−2x)‖ ≤ (2 + 2r)P (x)r

and so

‖2f(−2x) + f(4x)‖ ≤ (2 + 2r)2rP (x)r

for all x ∈ X. Thus

‖4f(x)− f(4x)‖ ≤ (4 + 2r+2 + 22r)P (x)r

and so ∥∥∥∥f(x)− 1
4
f(4x)

∥∥∥∥ ≤
4 + 2r+2 + 22r

4
P (x)r

for all x ∈ X.
The rest of the proof is the same as in the proof of Theorem 2.2.

Theorem 3.3. Let r be a positive real number with r < 1
3 , and let

f : X → Y be a mapping such that

‖f(x) + f(y) + f(z)‖ ≤ ‖f (x + y + z)‖+ P (x)r · P (y)r · P (z)r

for all x, y, z ∈ X. Then there exists a unique Cauchy additive mapping
h : X → Y such that

‖f(x)− h(x)‖ ≤ 2r+1 + 24r

4− 43r
P (x)3r

for all x ∈ X.

Proof. The proof is similar to the proofs of Theorems 2.2 and 2.3.

4. Stability of a functional inequality associated with the
Cauchy-Jensen functional equation

We prove the Hyers-Ulam stability of a functional inequality associ-
ated with a Jordan-von Neumann type Cauchy-Jensen functional equa-
tion.

Proposition 4.1. ([19, Proposition 2.3]) Let f : X → Y be a map-
ping such that

‖f(x) + f(y) + 2f(z)‖ ≤
∥∥∥∥2f

(
x + y

2
+ z

)∥∥∥∥
for all x, y, z ∈ X. Then f is Cauchy additive.
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Theorem 4.2. Let r be a positive real number with r < 1, and let
f : X → Y be a mapping such that

‖f(x) + f(y) + 2f(z)‖(4.1)

≤
∥∥∥∥2f

(
x + y

2
+ z

)∥∥∥∥ + P (x)r + P (y)r + P (z)r

for all x, y, z ∈ X. Then there exists a unique Cauchy additive mapping
h : X → Y such that

‖f(x)− h(x)‖ ≤ 2 + 3 · 2r + 22r

4− 4r
P (x)r =

1 + 2r

2− 2r
P (x)r

for all x ∈ X.

Proof. Letting x = y = z = 0 in (4.1), we get ‖4f(0)‖ ≤ ‖2f(0)‖. So
f(0) = 0.

Replacing x by −2x and letting y = 0 and z = x in (4.1), we get

‖f(−2x) + 2f(x)‖ ≤ (1 + 2r)P (x)r

and so

‖2f(−2x) + f(4x)‖ ≤ (1 + 2r)2rP (x)r

for all x ∈ X. Thus

‖4f(x)− f(4x)‖ ≤ (2 + 3 · 2r + 22r)P (x)r

and so ∥∥∥∥f(x)− 1
4
f(4x)

∥∥∥∥ ≤
2 + 3 · 2r + 22r

4
P (x)r

for all x ∈ X.
The rest of the proof is the same as in the proof of Theorem 2.2.
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